5.2 questions ms

1.

(i)
$$2Na + 2H_2O \rightarrow 2NaOH + H_2(1)$$

(ii) $Na_2O + H_2O \rightarrow 2NaOH$ (1) [2]

2. Phosphorus (V) oxide Approximate pH Sulphur dioxide Approximate pH Approximate pHApproxim

3. (i)
$$4Al + 3O_2 \rightarrow 2Al_2O_3$$
 (1)

(ii) aluminium is protected by an **oxide** layer (1)

		Sodium oxide	Silicon dioxide	Phosphorus(V) oxide	Sulphur dioxide		
(iii)	Physical state at room temperature	solid	solid	solid	gas		
	allow abbreviations (s) and (g)						
	Type of bonding present	ionic	covalent	covalent	covalent		

must give ionic/covalent but ignore additional information about structure

if 8 correct, give 4 marks if 6 or 7, give 3 if 4 or 5, give 2 if 2 or 3, give 1 4 $Na_2O + H_2O \rightarrow 2NaOH$ (1) (iv) accept ionic charges (if correct) for Na compounds 1 (v) $SO_2 + H_2O \rightarrow H_2SO_3$ (1) do not accept SH₂O₃ accept ions on RHS 1 silicon dioxide 7 (1) (vi) phosphorus(v) oxide 0 - 3 (1) 2 (must give values)

[10]

1

1 1

[4]

4.	(a)	ionic (1)				
		O ²⁻ ion reacts with water (1) forming OH– (or NaOH) (1)			3	
	(b)	General type Formula	covalent (1) (or non-meta) SO_2 (1) etc	l or molecular)	2	[5]
5.	(a)	$Mg + 2HCl \rightarrow M$ $MgO + 2HCl \rightarrow I$ $Allow$	-		1 1	
	(b)	Hydrogen collection Using a gas syringe or measuring cylinder/ graduated vessel over water Allow if shown in a diagram				
		Measurements	(i) P (ii) T (iii) V		1 1 1	
		Use ideal gas equ Mol H ₂ = mol Mg	1 1			
	(c)		\rightarrow Mg(OH) ₂ + 2NaCl w an ionic equation	Species Balanced	1 1	
		$Mg(OH)_2 \rightarrow MgO$	$O + H_2O$		1	

(d)	Allow 2 significant figures in these calculations and ignore additional	figures			
	EITHER				
	Mol MgO obtained stage 2 = mass MgO/MrMgO				
	= 6.41/40.(3) = 0.159 Allow 0.16 Allow method mark if formula of magnesium oxide or M_r incorrect				
	Moles of $Mg = moles$ of H_2 hence				
	Mol original MgO = mol MgO from stage 2 - mol H ₂ = 0.159 - 0.0528 = 0.106 Allow 0.11 Mark consequentially to moles of magnesium oxide determined above				
	OR				
	Mass MgO formed from Mg = $0.0528 \times M_r$ MgO {or 40.(3)}	(1)			
	= 2.13 g Allow 2.1 Allow method mark if formula of magnesium oxide or Mr incorrect	(1)			
	Mass original MgO = total mass MgO - mass formed from Mg	(1)			
	= 6.41 - 2.13 = 4.28 g Allow 4.3 Mark consequentially mass of magnesium oxide determined above	(1) 1			

[15]

the trend is a decrease in pH (or from alkaline to acid) (1)(can be implied from separate values) Na₂O + H₂O \rightarrow 2NaOH product (1) equation (1)

(allow Na⁺ OH⁻, ignore state symbols)

 Na_2O is ionic lattice (1)

(if lattice is not mentioned lose mark only once ie allow ionic for MgO, $A1_2O_3$)

 $MgO + H_2O \rightarrow Mg(OH)_2 \text{ product (1) equation (1)}$ (allow $Mg^{2+} + 2OH^{-}$)

MgO is ionic lattice (1)

MgO sparingly soluble (1)

 $A1_2O_3$ is ionic lattice or covalent macromolecular (1)(if covalent not mentioned lose mark only once) insoluble in water or no reaction (1)(if formula wrong lose one mark)

 SiO_2 is covalent macromolecular (1)(if covalent not mentioned lose mark only once) insoluble in water or no reaction (1)(formula wrong lose 1 mark)

 $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ product (1) equation (1)(allow P_2O_5 , P_4O_6 , P_2O_3) H_3PO_4 is a strong acid or very acidic (1)

 P_4O_{10} is covalent molecular (1)(if covalent or molecular not mentioned lose mark once only)

 $SO_2 + H_2O \rightarrow H_2SO_3$ Product (1) equation (1) or $SO_3 + H_2O \rightarrow H_2SO_4$ Product (1) equation (1)

 H_2SO_3 is a weak acid (1) H_2SO_4 is a strong acid or very acidic (1)

 SO_2 is covalent molecular (1) SO_3 is covalent molecular (1)

(Choose the best of the above two answers if both given)

[19]

max 19